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a b s t r a c t

A new characteristics-based decomposition of the ideal magnetogasdynamic equations is
derived. This formulation consists in representing the temporal variation of the physical
quantities pressure, velocity, magnetic field and entropy as a linear combination of the
generic advective terms corresponding to each wave type occurring in the medium. The
flux terms can then be handled with existing high-order upwind dispersion relation pre-
serving schemes; those being specifically chosen in our case to increase numerical accuracy
and improve stability. Another feature of the new formulation of the non-ideal governing
equations is that the boundary conditions are exactly satisfied at the frontiers of the com-
putational domain. The accuracy of the method is assessed by comparison between numer-
ical and exact solutions. Good agreement is obtained between computed and exact
solutions.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Recent research has shown that compressible flows may be modified significantly by magnetic Lorentz forces provided by
the interaction between the conducting medium and a magnetic field [14–17]. Therefore, flow control by magnetic field ac-
tion could be an efficient process to reduce drag due to turbulence in aerospace applications by suppressing or enhancing the
boundary layer instability and transition. Another challenge is the control of the magneto-aeroacoustic noise, which could be
realized by using electromagnetic/fluid interactions in the boundary layer and/or by using optimal transpiration boundary
control as done for the aeroacoustic flows [1]. The physical understanding of these approaches requires to consider fluid
dynamics, electromagnetics, molecular physics and chemical kinetics, among others. In this paper, we will consider the first
two of these, within the hypothesis of non-ideal magnetohydrodynamics (MHD). The MHD equations result from merging
the Maxwell and Navier–Stokes equations in the so-called non-ideal MHD form. This MHD formulation is obtained
under the hypothesis of negligible displacement current density, negligible density charge and finite electrical conductivity
of the gas.

The development of new algorithms to solve the equations of compressible continuum MHD deals essentially with up-
wind or characteristics-based schemes issued from the proper eigensystem of ideal MHD equations. Examples of these meth-
ods solving Riemann problem in the direction normal to a cell face, can be found in [2,11]. Characteristics-based methods
have already been implemented into two-dimensional codes for both ideal and non-ideal cases [10,6]. A more recent ap-
proach consists in using high-order spatially implicit schemes (Padé-type) [5,8] in conjunction with high-order filters for
non-ideal three-dimensional MHD [3]. The high-order filters are needed to avoid the small scale instabilities generated by
. All rights reserved.
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the finite difference schemes without deterioration of the accuracy. This very versatile approach can be used in multidisci-
plinary applications to solve the equations governing the dynamics of the flow.

In the present paper, the eigenstructure of the ideal MHD equations is examined with the idea of deriving high resolution
computational algorithms for turbulent flows as well as for acoustic problem. Starting from the MHD model equations, a
pressure-velocity-magnetic field-entropy formulation of the MHD equations is given in a non-conservative form. Such
numerical methods have already been successfully exploited in the case of compressible Navier–Stokes equations
[7,13,9,1]. For instance, upwind methods are very efficient and highly appreciated for aerospace applications in the high
speed regime. They require a well founded knowledge of wave propagation phenomena which should be strongly incorpo-
rated in this numerical method. Indeed in the MHD case, this formulation takes into account the contribution of each wave-
type wc/Slow magnetoacoustic, Alfvén and entropy waves to the temporal variations of the physical quantities. Therefore,
high-order upwind dispersion relation preserving is used for each wave-type flux term appearing in the equations providing
high stability and accuracy properties to the method. Moreover, this formulation allows to specify exact wall boundary con-
ditions as shown in Section 5. Two examples of inflow condition implementations are given in Section 5, showing how the
boundary conditions can be exactly imposed for both the non-reflecting and the subsonic flow cases. In addition, four val-
idation cases are simulated with a two-dimensional code to analyse the method accuracy and validate the code. Conclusions
are given in Section 8.

2. Governing equations

The governing equations of MHD are obtained by coupling the pre-Maxwell equations to the Navier–Stokes equations.
The coupling consists in adding the Lorentz force to the momentum equation and electromagnetic energy terms to the en-
ergy equation. The pre-Maxwell equations are derived from the complete Maxwell equations and are written as follows
using SI units:
r�H ¼ jþ oD
ot
; ð1Þ

r � E ¼ � oB
ot
; ð2Þ

r � B ¼ 0; ð3Þ
r � D ¼ q; ð4Þ
where E and H are the electric and magnetic field vectors, D ¼ �0E is the electric displacement, j is the current density vector,
B is the magnetic induction vector, and q is the charge density. The two important assumptions of MHD are (i) �x=r� 1 and
(ii) ðkuk=cÞ2 � 1, where � is the dielectric constant, x the plasma frequency, r the electrical conductivity, u the medium
velocity, and c the speed of light. The assumption (i) permits to discard the displacement current term oD

ot in the Ampère–
Maxwell equation (1). The second assumption (ii) allows to ignore the relativistic effects. Indeed, we consider the case where
typical flow length scales are much larger than the Debye length, flow time scales are larger than the reciprocal of the plasma
frequency, and flow velocities are much less than the speed of light. The constitutive relations are then written as
B ¼ lmH; ð5Þ
j ¼ r � ðEþ u� BÞ; ð6Þ
where lm is the magnetic permeability and Eq. (6) is the generalized Ohm’s law in which the convection, polarization, Hall,
and ion-slip current components have been neglected. The electrical conductivity tensor can be approximated by a scalar
value if the collision frequency is much greater than the cyclotron (gyro) frequency, as is the case in a relatively dense
gas. The equations are, thus, pertinent in the paradigm of strongly collision dominated plasmas.

The equation describing the magnetic induction evolution may be written as
oB
ot
þr� 1

r
r� B

lm

� �
� u� B

� �
¼ 0 ð7Þ
by eliminating the electric field E in Faraday’s law (2) with the help of Ohm’s law (6) and substituting j in Faraday’s law from
the Ampere–Maxwell law (1). Equivalently, this equation may be written in conservation form as
oB
ot
þr � ðuB� BuÞ þ r � 1

r
r� B

lm

� �� �
¼ 0: ð8Þ
The equations describing the fluid motion are the Navier–Stokes equations. The continuity equation remains unchanged,
whereas the momentum equation contains the extra electromagnetic body force term Fem ¼ j� B, which may be written:
Fem ¼ j� B ¼ r � ðBB=lmÞ � rðB2=lmÞ; ð9Þ
where r � B ¼ 0 has been employed. The momentum equation may therefore be written as
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oqu
ot
þr � quuþ pþ B � B

2lm

� �
I� BB

lm

� �
�r � s ¼ 0; ð10Þ
where p is the static pressure, B � B=lm is the magnetic pressure. The shear stress tensor s is defined in terms of the molecular
viscosity l by
s ¼ l ðr þrTÞu� 2
3
ðr � uÞI

� �
; ð11Þ
where I denotes the identity tensor and ‘T’ the transpose.
The energy equation is obtained by adding the electromagnetic energy term Em:
Em ¼ E � j ¼ ðj=r� u� BÞ � j ¼ 1
r r� B

lm

� �2

� u� Bð Þ � r � B
lm

� �
; ð12Þ
where j2
=r is the Joule heating term and �u� B � j ¼ u � j� B is the work done by the Lorentz force. The Joule heating drives

internal energy variations and the Lorentz force contributes to kinetic energy variations. The energy conservation equation
may be written in conservation law form by introducing the total energy term Z ¼ eþ 1

2 u2 þ B2=ð2lqÞ where e ¼ p=ðc� 1Þq
is the internal energy.

It is assumed that the transport coefficients l, j, r are known functions of the state variables T and q so it only remains to
specify the state equation for T and e. These follow from the assumption that the plasma behaves like a perfect gas.

The non-ideal MHD equations can be written by using b � B=
ffiffiffiffilp as follows:
oq
ot
þr � ðquÞ ¼ 0; ð13Þ

oqu
ot
þr � ðquuþ PI� bbÞ ¼ r � s; ð14Þ

ob
ot
þr � ðub� buÞ þ r� 1

r
ðr � bÞ

� �
¼ 0; ð15Þ

oE
ot
þr � ½ðEþ PÞu� ðb � uÞb� ¼ þr � u � sþ Q þ b

r
� rb�rb � b

r

� �� �
; ð16Þ
where E ¼ qZ ¼ qðeþ u2=2Þ þ b2
=2 is the total energy, P ¼ pþ kbk2

=2 the total pressure, Q ¼ krT is the heat flux with k the
thermal conductivity.

These equations can be non-dimensionalized by the quantities: length scale L, qref , uref , Bref , lmref
, Tref , and rref . The non-

dimensional quantities appearing in the equations are
tH ¼ tL=Uref ; qH ¼ q=qref ; TH ¼ T=Tref ;

UH ¼ U=Uref ; BH ¼ B=Bref ; pH ¼ p=qref U
2
ref ;

lH ¼ l=lref ; lH

m ¼ lm=lmref
; rH ¼ r=rref :
In the following the asterisk superscript will be dropped for notational convenience. Therefore all the quantities will be as-
sumed to be adimensionalized. The non-dimensional form of Eqs. (13)–(16) is
oq
ot
þr � ðquÞ ¼ 0; ð17Þ

oqu
ot
þr � ðquuþ PI� RbbbÞ ¼ 1

Re
r � s; ð18Þ

ob
ot
þr � ðub� buÞ ¼ � 1

Rer
r� 1

r
ðr � bÞ

� �
; ð19Þ

oE
ot
þr � ½ðEþ PÞu� Rbðb � uÞb� ¼ r � Fl; ð20Þ
where
P ¼ pþ Rb b2
=2

� �
;

E ¼ p=ðc� 1Þ þ u2=2þ Rbðb2
=2Þ;

Fl ¼ 1
Re

u � sþ 1
ðc� 1ÞPrM2Re

Q þ Rb

Rer

b
r � rb�rb � br

� �
;

with Re ¼ qref Uref L=lref is the Reynolds number, Pr ¼ lref Cp=k ¼ 0:72 is the Prandtl number, M ¼ Uref=
ffiffiffiffiffiffiffiffiffiffiffiffi
crTref

p
is the

Mach number, Rb ¼ B2
ref=qref U

2
reflmref

is the magnetic force number and Rer ¼ LUreflmref
rref is the magnetic Reynolds number.
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3. Pseudo-wave scheme for 1D ideal MHD equations

The equations under pseudo-wave form are obtained by first writing an approximate Riemann solver as described by
Powell et al. [11] for the 1D non-viscous part of the Eqs. (17)–(20). It is convenient to consider these equations under sym-
metrizable form, in terms of primitive variables
W ¼ ðq;u; v;w; bx; by; bz;pÞT
as a quasilinear system, written as
oW
ot
þ ðAx;Ay;AzÞ � rW ¼ 0; ð21Þ
where Ax, Ay and Az are the jacobian matrices of the hyperbolic system in each space direction. The components of the jaco-
bian matrices are given in [11], but are not explicitly required in the following.

Thereafter, for simplicity, the equations are derived for n ¼ x. Therefore, the Riemann invariant relationships are obtained
by writing the scaled left eigenvectors ‘ of the eigensystem matrix
An ¼ ðAx;Ay;AzÞ � n;
where n is the direction of the space derivative. The eigensystem of the governing equations under quasi-conservative and
symmetrizable form has eight eigenvalues corresponding to different waves, as discussed in [11]. The eigenvalues are

� kE ¼ u corresponding to an entropy wave,
� kM ¼ u corresponding to a magnetic field divergence wave,
� kA	 ¼ u	 cx

A corresponding to a pair of Alfvén waves with cx
A ¼

jbx jffiffiffi
q
p ,

� kF	 ¼ u	 cx
f corresponding to a pair of fast magnetoacoustic waves,

� kS	 ¼ u	 cx
s corresponding to a pair of slow magnetoacoustic waves,

with cx
f ;s the magnetoacoustic wave speed along x given by
ðcx
f ;sÞ

2 ¼ 1
2

cpþ Rbb � b
q

	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cpþ Rbb � b

q

� �2

� 4
cp
q

cx
A

2

s0
@

1
A:
The second wave has a zero eigenvalue in the fully conservative case, but in the symmetrizable case, an eigenvalue equal to
the normal component of the velocity. This wave describes the jump in the normal component of the magnetic field at dis-
continuities and leads to an equation stating that r�bq is a passive scalar for the system. The danger of the not fully conser-
vative formulation is that terms of order r � b are added, to what would be a divergence form (the one without the
source term). However, in the case of flows without shock, as considered here, the added terms are negligible. Moreover,
an other key property for wave propagation simulation is that this system under not fully conservative formulation is Gal-
ilean invariant.

The eigenvectors are unique except for a scaling factor. We use in this work, the choice given by Roe and Balsara [12] by
using the coefficients:
ðax
f Þ

2 ¼ a2 � cx
s

2

cx
f

2 � cx
s

2
; ðax

sÞ
2 ¼ cx

f
2 � a2

cx
f

2 � cx
s

2
;

bx
y ¼

byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

y þ b2
z

q ; bx
z ¼

bzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

y þ b2
z

q :
Hence, the scaled left eigenvectors and corresponding eigenvalues are

� Entropy
kE ¼ u; ð22Þ

‘E ¼ 1;0;0;0;0;0; 0;� 1
a2

� �
: ð23Þ
� Magnetic field divergence wave
kM ¼ u; ð24Þ
‘M ¼ ð0;0;0;0;1; 0;0; 0Þ: ð25Þ
� Alfvén waves
kA ¼ u	 R1=2
b

bxffiffiffiffiqp ; ð26Þ
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‘A ¼ 0;0;� bx
zffiffiffi
2
p ;

bx
yffiffiffi
2
p ; 0;	 bx

zffiffiffiffiffiffi
2q

p ;

bx

yffiffiffiffiffiffi
2q

p ;0

 !
: ð27Þ
� Fast magnetoacoustic waves
kF	 ¼ u	 cx
f ; ð28Þ

‘F	 ¼ 0;	ax
f cf

2a2 ;

ax

scx
s

2a2 bx
y signbx;


ax
scx

s

2a2 bx
z signbx;0;

ax
sb

x
y

2a
ffiffiffiffiqp ;

ax
sb

x
z

2a
ffiffiffiffiqp ;

ax
f

2a2q

 !
: ð29Þ
� Slow magnetoacoustic waves
kS	 ¼ u	 cx
s ; ð30Þ

‘S	 ¼ 0;	ax
scx

s

2a2 ;	
ax

f cx
f

2a2 bx
y signbx;	

ax
f cx

f

2a2 bx
z signbx;0;�

ax
f b

x
y

2a
ffiffiffiffiqp ;� ax

f b
x
z

2a
ffiffiffiffiqp ;þ ax

s

2a2q

 !
: ð31Þ
Then, we obtain eight relationships satisfied by the solution of the Eq. (21) asserting that there exists eight quantities
which are constant along characteristic paths, defined by dx=dt ¼ kX , and corresponding to the eight ideal MHD propagating
waves. These are obtained by writing dX ¼ ‘X � dWT ¼ ‘X � ðdq;du;dv; dw;dbx;dby;dbz;dpÞT ¼ 0 along each characteristic,
with X ¼ E;M;A	; F	; S	, where the left hand sides of these equations are given by

� Entropy
dE ¼ dq� dp
a2 : ð32Þ
� Magnetic field divergence wave
dM ¼ R1=2
b dbx: ð33Þ
� Alfvén waves
dA	 ¼ � bx
zffiffiffi
2
p dvþ

bx
yffiffiffi
2
p dw	 bx

zffiffiffiffiffiffi
2q

p dby 

bx

yffiffiffiffiffiffi
2q

p dbz: ð34Þ
� Fast magnetoacoustic waves
dF	 ¼ 	ax
f cx

f

2a2 du
 ax
scx

s

2a2 bx
y signbxdv
 ax

scx
s

2a2 bx
z signbxdwþ R1=2

b þ
ax

sb
x
y

2a
ffiffiffiffiqp dby þ

ax
sb

x
z

2a
ffiffiffiffiqp dbz

 !
þ ax

f

2a2q
dp: ð35Þ
� Slow magnetoacoustic waves
dS	 ¼ 	ax
scx

s

2a2 du	 ax
f cx

f

2a2 bx
y signbxdv	 ax

f cx
f

2a2 bx
z signbxdw� R1=2

b

ax
f b

x
y

2a
ffiffiffiffiqp dby þ

ax
f b

x
z

2a
ffiffiffiffiqp dbz

 !
þ ax

s

2a2q
dp: ð36Þ
These equations are straightforwardly obtained by multiplying the system
oW
ot
þ An � rW ¼ 0;
on the left, successively, by the left eigenvectors ‘X , with X ¼ E;M;A	; F	; S	.
Therefore, for each mhd invariant X ¼ E;M;A	; F	; S	, the hyperbolic system gives the relations:
dX
dt
¼ oX

ot
þ kX �

oX
ox
¼ 0; ð37Þ
where kX is the corresponding eigenvalue.
By substituting the expression (32)–(36) into Eq. (37) and by using linear combinations of what is obtained, we isolate the

time derivative of each primitive variable. The hyperbolic system under primitive variable form can then be written, with
advective term Xx ¼ kX � oX

ox, as:
op
ot
¼ Xp;

os
ot
¼ Xs; ð38Þ

ou
ot
¼ Xu;

obx

ot
¼ Xbx ; ð39Þ
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ov
ot
¼ Xv;

oby

ot
¼ Xby ; ð40Þ

ow
ot
¼ Xw;

obz

ot
¼ Xbz ; ð41Þ
where
Xp ¼ �qa2½ax
f ðF

þ
x þ F�x Þ þ ax

sðS
þ
x þ S�x Þ�;

Xu ¼ ax
f cx

f ðF
þ
x � F�x Þ � ax

scx
sðS
þ
x � S�x Þ;

Xv ¼ þ bx
zffiffiffi
2
p ðAþx þ A�x Þ � bx

y signbx½ax
scx

sðF
þ
x � F�x Þ � ax

f cx
f ðS
þ
x � S�x Þ�;

Xw ¼ �
bx

yffiffiffi
2
p ðAþx þ A�x Þ � bx

z signbx½ax
scx

sðF
þ
x � F�x Þ � ax

f cx
f ðS
þ
x � S�x Þ�;

Xbx ¼ �Mx=R1=2
b ;

Xby ¼ 1

R1=2
b

�bx
z

ffiffiffiffi
q
2

r
Aþx � A�x
	 


� bx
ya

ffiffiffiffi
q
p

ax
s Fþx þ F�x
	 


� ax
f Sþx þ S�x
	 
� �� �

;

Xbz ¼ 1

R1=2
b

þbx
y

ffiffiffiffi
q
2

r
Aþx � A�x
	 


� bx
za

ffiffiffiffi
q
p

ax
s Fþx þ F�x
	 


� ax
f Sþx þ S�x
	 
� �� �

;

Xs ¼ �Ex:
4. Extension to multidimensional non-ideal MHD

The Lorentz force acting on the gas particles produces an additional entropy alteration mechanism which is the Joule
heating. This dissipative mechanism contributes to internal energy and entropy production. And therefore in the non-ideal
MHD case, the three entropy sources are the following physical processes: thermal conduction, Joule heating and heating
due to the viscosity.

The ðp;u;b; sÞ system can be written with additional viscous terms:
op
ot
þ u � rp ¼ cpr � uþ p

Cv

os
ot
þ u � rs

� �
; ð42Þ

os
ot
þ u � rs ¼ Sl

p
; ð43Þ
with
Sl ¼ R
1

ðc� 1ÞPrM2Re
r � Q þ Rb

Rer

j2

r
þ 1

Re
s : ru

 !
:

Therefore, the two-dimensional viscous governing equations can be written as
op
ot
¼ Xp þ Yp þ Sl=Cv; ð44Þ

ou
ot
¼ Xu þ Yu þ Ul=q; ð45Þ

ov
ot
¼ Xv þ Yv þ Vl=q; ð46Þ

ow
ot
¼ Xw þ Yw þWl=q; ð47Þ

obx

ot
¼ Xbx þ Ybx þ Bl

x ; ð48Þ

oby

ot
¼ Xby þ Yby þ Bl

y ; ð49Þ

obz

ot
¼ Xbz þ Ybz þ Bl

z ; ð50Þ

os
ot
¼ Xs þ Ys þ Sl=p; ð51Þ
where the Yp;u;v;w;bx ;by ;bz ;s terms can be obtained by circular permutation of reference frame axes in relations (38)–(41), cf.
Appendix A, and where the viscous terms are written as
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Ul ¼ 1
Re

os1j

oxj
; Bl

x ¼
1

Rer

o

oxj

1
r

ob1

oxj
� obj

ox1

� �
;

Vl ¼ 1
Re

os2j

oxj
; Bl

y ¼
1

Rer

o

oxj

1
r

ob2

oxj
� obj

ox2

� �
;

Wl ¼ 1
Re

os3j

oxj
; Bl

z ¼
1

Rer

o

oxj

1
r

ob3

oxj
� obj

ox3

� �
:

5. Boundary conditions

We can distinguish two different types of numerical boundary conditions. The first case is when the numerical domain
frontier correspond to the interface between two media. In a stationary frame of reference, the set of boundary conditions for
the electromagnetic field requires that the normal components of magnetic flux density B and the tangential components of
the electric fields are continuous across media interface. The difference between normal components of the electric field
strength E is balanced by the surface charge density qs. Finally, the discontinuity of the tangential components of the mag-
netic field density B is equal to the surface current density js. The second case is when the boundary of the numerical domain
gives rise to an open boundary condition, corresponding, for example, to an inflow or outflow physical setup. This boundary
is then purely numerical, but generally produces unphysical spurious wave reflections due to the decrease of the numerical
scheme order near the frontier.

With the pseudo-wave decomposition, the boundary conditions satisfying the non-ideal MHD equations can be easily im-
posed for a physical solid boundary between two media as well as for outlet or inlet conditions.

5.1. Non-reflecting boundary conditions

An interesting case is the non-reflecting boundary condition, which is imposed by avoiding on the box limit the contri-
bution of the incoming waves obtained by checking the eigenvalue kX corresponding to different wave types
X ¼ Ex;Mx; F

	
x ;A

	
x ; S

	
x . For example at the left boundary of the computational box, where kX is positive, i.e. if the X-wave is

incoming, Xx is fixed to zero.

5.2. Subsonic inflow boundary conditions

The subsonic inflow condition consists in prescribing the variation of five unknowns at the boundary nodes correspond-
ing to five incoming waves. Different cases are possible, for example, the quantities os=ot, ou=ot, ov=ot, ow=ot, obx=ot can be
prescribed to obtain the contribution of the incoming waves Mx, Ex, Fþx , Aþx , Sþx to the temporal variation on the boundary:
Mx ¼
obx

ot
� Ybx � Bl

x ;

Ex ¼
os
ot
� Ys � Sl=p;

Fþx ¼ F�x þ
cx

f a
x
f

a2

ou
ot
� Yu � Ul=q

� �
þ cx

sax
s

a2 signbxðbx
yXv þ bx

zXwÞ;

Aþx ¼ A�x �
ffiffiffi
2
p
ðbx

yXw � bx
zXvÞ;

Sþx ¼ S�x þ
cx

sax
s

a2

ou
ot
� Yu � Ul=q

� �
� cx

f a
x
f

a2 signbxðbx
yXv þ bx

zXwÞ;
where the quantities Xu,Xv and Xw are given by the relations (45)–(47), and with
Xu ¼ ou
ot
� Yu � Ul=q;

Xv ¼ ov
ot
� Yv � Vl=q;

Xw ¼ ow
ot
� Yw �Wl=q:
6. Numerical method

The new decomposition based on the p;u; b; s variables permits one to naturally use high-order upwind schemes to en-
force numerical stability and minimize the numerical dissipation. The time-marching DRP schemes are developed by opti-
mizing the finite difference approximations of the space and time derivatives in the wave number and frequency space [19].
These schemes have a good behavior for the radiation boundary conditions causing little acoustic reflections.
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In this work all the inviscid fluxes appear in a quasilinear form and can be written under the generic form ðu o/
oxÞwhere u is

a fluid velocity component and / the advected quantity. High-order upwind Dispersion Relation Preserving schemes are
used for all fluxes to improve both the stability and numerical accuracy for this wave propagation problem.

At the interior nodes the fourth-order accurate upwind biased DRP scheme [20] is written as follows:
u
o/
ox

� �
¼ ui

1
Dx

X
k¼�4;2

ak/iþk; ð52Þ
with
a�4 ¼ 0:0161404967151; a�3 ¼ �0:122821279020; a�2 ¼ 0:455332277706;

a�1 ¼ �1:2492595882615; a0 ¼ 0:5018904380193; a1 ¼ 0:4399321927296;

a2 ¼ �0:04121453788895
when the convective velocity u is positive. This DRP scheme has to be modified near the computational domain boundaries
as follows:

� At i ¼ 2, the first-order upwind scheme is used
u
o/
ox

� �
¼ ui

1
Dx

X
k¼�1;0

ak/iþk; ð53Þ
with
a�1 ¼ �1; a0 ¼ 1:
� At i ¼ 3, the third-order upwind scheme is used
u
o/
ox

� �
¼ ui

1
Dx

X
k¼�2;1

ak/iþk; ð54Þ
with
a�2 ¼ 1=6; a�1 ¼ �1; a0 ¼ 1=2; a1 ¼ 1=3:
� At i ¼ 4, the fifth-order upwind scheme is used
u
o/
ox

� �
¼ ui

1
Dx

X
k¼�3;2

ak/iþk; ð55Þ
with
a�3 ¼ �1=30; a�2 ¼ 1=4; a�1 ¼ �1; a0 ¼ 1=3; a1 ¼ 1=2; a2 ¼ �1=20:
� At i ¼ Nx� 1, the third-order upwind-biased DRP scheme proposed in [20] is used
u
o/
ox

� �
¼ ui

1
Dx

X
k¼�5;1

ak/iþk; ð56Þ
with
a�5 ¼ �0:0306489732244242; a�4 ¼ 0:202225858313369; a�3 ¼ �0:634728026533812;

a�2 ¼ 1:29629965415671; a�1 ¼ �2:14305478803459; a0 ¼ 1:10888726751399;

a1 ¼ 0:201019007808754:
� At i ¼ Nxd, the sixth order upwind scheme is used
u
o/
ox

� �
¼ ui

1
Dx

X
k¼�6;0

ak/iþk; ð57Þ
with
a�6 ¼ 1=60; a�5 ¼ �6=5; a�4 ¼ 15=4; a�3 ¼ 20=3; a�2 ¼ 15=2; a�1 ¼ �6; a0 ¼ 49=20:
The third order TVD Runge–Kutta scheme, proposed by Shu and Osher [18], is used for time discretization



Fig. 1.
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un;1 ¼ un þ Dt
oun

ot

� �
;

un;2 ¼ 1
4

3un þ un;1 þ Dt
oun;1

ot

� �� �
;

unþ1 ¼ 1
3

un þ 2un;2 þ 2Dt
oun;2

ot

� �� �
:

This TVD temporal scheme is optimal in the sense of CFL coefficient as proved in [4] and is suitable for solving hyperbolic
conservations laws with stable spatial discretization. The time step Dt is restricted as usual by a CFL condition, with
Dt ¼ CFL �min
X

Dx
juj þ cf

;

where X is the computational domain.

7. Numerical validation

Three different physical cases, corresponding to different initial conditions, are considered: an Alfvén wave, 1D and 2D
magnetosonic wave propagation and the MHD equivalent of the 1D Rayleigh problem for viscous assessment. The flow re-
gime is characterized by two dimensional numbers, the sonic M and the alfvénic MA Mach numbers. The background pres-
sure p0 is given by the Mach number and the background magnetic field b0 by the Alfvénic Mach number.

7.1. Initial conditions

The background physical state in term of non-dimensional quantities pressure p, fluid velocity u, magnetic field b and
entropy s is given by
q0 ¼ 1;

p0 ¼
q0

cM2 ;

u0 ¼ 1;
b0 ¼ 1;
s0 ¼ Cv lnðpc=qÞ;
with Cv ¼ 1=M2cðc� 1Þ. Therefore, we will consider fluctuation propagations around these background states. Then the so-
nic velocity field is c2 ¼ cp=q, the Alfvén wave velocity along x-axis is cA ¼ bx

ffiffiffiffiffiffiffiffiffiffiffi
Rb=q

p
.

7.2. Alfvén wave propagation

The Alfvén wave travels through the computational box of length L ¼ 15 with the non-dimensional wave velocity cA ¼ 1.
The computational box is periodic in both directions, the number of grid points is Nx� Ny ¼ 51� 11. The x components of
the magnetic field and of the velocity field are
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bx ¼ 1; u ¼ 0;
where these quantities are non-dimensional. Under these conditions, the solution to the governing equations is
bz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rb=lmq

p
ðx; tÞ ¼ �wðx; tÞ ¼ f ðx� cAtÞ, where cA ¼ bx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rb=lmq

p
is the Alfvén velocity. In that case, lm, Rb ¼ 1=

ffiffiffiffiffiffiffi
MA
p

and q
are set to unity. The Mach number is set to the low value M ¼ 10�2 to simulate a quasi-incompressible flow. At t ¼ 0, the
initial transverse magnetic field perturbation is bz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRb=lmqÞ

p
¼ e�x2 . The time step used for the simulation is fixed to

Dt ¼ 5� 10�3 to provide time-step-independent results.
The Alfvén wave propagation is simulated until t ¼ 15, that is the time, when the soliton wave form has traveled once

through the computational box. The computed transverse component of the magnetic field at t ¼ 15 is perfectly superposed
to the initial wave at t ¼ 0 as shown in Fig. 1. Therefore, the method has small dispersion and dissipation properties. Explicit
and compact schemes have been benchmarked on the same setup in [3]. Our method gives result quality similar to high or-
der (4th-order and 6th-order) spatially implicit schemes considered in conjunction with up to 10th-order filters, as intro-
duced in [3].

7.3. Magnetosonic wave propagations

7.3.1. 1D pressure pulse: M ¼ 0:5 and MA ¼ 2
The initial condition is a pulse of pressure given by
pðx; y; t ¼ 0Þ ¼ p0ð1þ eeax2 Þ; ð58Þ
qðx; y; t ¼ 0Þ ¼ q0ð1þM2p0eeax2 Þ; ð59Þ
where R is the initial perturbation radius and a ¼ � lnð2Þ=R2. To validate the one dimensional case, we will use u0 ¼ 0 to eas-
ily compare the velocity wave to the theoretical speed without loss of generality. The bx component is given by the Alfvénic
Mach number. A non-zero value bz ¼ 1 is taken to allow simultaneously both slow and fast magnetoacoustic 1D wave
propagation.

The simulations are performed for different sonic M and Alfvénic MA Mach numbers. The perturbation amplitude pressure
is set to e ¼ 10�3 times the background reference pressure. The mesh consists of 51� 11 grid points. We set the Mach num-
ber to the value M ¼ 0:01, the magnetic permeability lm ¼ 1, the CFL ¼ 0:5, the Reynolds number is Re ¼ 1 and the mag-
netic Reynolds number Rer ¼ 1.

Fig. 2(a) shows the pressure variation due to fast and slow magnetoacoustic waves traveling toward left and right with
cs ¼ 0:5 and cf ¼ 2. The boundary conditions correspond to non-reflecting boundaries imposed by fixing the incoming waves
to zero on the computing box boundary. The capacity to evacuate the energy fluctuations is shown in the Fig. 2(b). The ratio
kET k2
kE0k2

of energy fluctuations at the final time t ¼ 150 to energy fluctuations at the initial time is around 10�6 (10�7 with k � k1

norm) and is slightly dependent on the physical setup considered, essentially in terms of sonic and Alfvénic Mach numbers.
We observe in this time evolution the two decreases due to the outgoing of first the fast magnetosonic (at t ¼ 10) and then
the slow magnetosonic (at t ¼ 40) waves, respectively.

7.3.2. 2D pressure pulse: M ¼ 0:9 and MA ¼ 2
The initial condition is a pulse of pressure with a non-zero advection velocity given by
pðx; y; t ¼ 0Þ ¼ p0ð1þ eear2
tÞ

uðx; y; t ¼ 0Þ ¼ u0=
ffiffiffi
2
p

; vðx; y; t ¼ 0Þ ¼ u0=
ffiffiffi
2
p

;wðx; y; t ¼ 0Þ ¼ 0
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bxðx; y; t ¼ 0Þ ¼ b0=
ffiffiffi
2
p

; byðx; y; t ¼ 0Þ ¼ b0=
ffiffiffi
2
p

bzðx; y; t ¼ 0Þ ¼ 0

qðx; y; t ¼ 0Þ ¼ q0ð1þM2p0eear2 Þ;
where r2 ¼ x2 þ y2 and a ¼ � lnð2Þ=R2. As in the 1D case, the pressure perturbation amplitude is set to e ¼ 10�3 times the
background reference pressure, the magnetic permeability to lm ¼ 1, the Reynolds number to Re ¼ 1 and the magnetic Rey-
nolds number to Rer ¼ 1. The mesh consists of 201� 201 grid points.

The initial pressure distribution is set to give rise to slow and fast magnetosonic waves. With M ¼ 0:9 and MA ¼ 2, the
slow and fast magnetosonic wave velocities are cs ¼ 0:5 and cf ¼ 1:11, respectively. Therefore in the direction of the mag-
netic field, both the right and left slow magnetosonic waves are advected in the direction of the magnetic field at speed
u0 	 cs and u0 	 cf for the fast magnetosonic waves. Fig. 3 shows the time evolution of the pressure field. The wave propa-
gation is anisotropic depending of the magnetic field direction. The wave expulsion is efficient with the imposed non-reflect-
ing wave at the box boundaries for both slow and fast magnetosonic wave fronts.

7.4. Resistive diffusion assessment: The equivalent 1D Rayleigh problem

We consider the resistive diffusion of a magnetic field to validate the non-ideal components of the code for finitely con-
ducting media. This problem is equivalent to the Rayleigh problem in fluid dynamics in which a sudden step velocity is im-
posed to the wall adjoining a viscous fluid. For the magnetic equivalent, a current sheet jzðy ¼ �5; t P 0Þ ¼ j0 is suddenly
imposed at the boundary domain in a semi-infinite region. In the conducting fluid, outside the conductor, a uniform mag-
netic field bxð0; t > 0Þ ¼ b0 which is parallel to the conductor surface, is induced. A no-slip condition uð0; t > 0Þ ¼ 0 is im-
posed at the boundary (�5 6 y 6 þ5) together with the specified value of the magnetic field bxð0; t > 0Þ ¼ b0 and
byð0; t > 0Þ ¼ bzð0; t > 0Þ ¼ 0. The theoretical solution can be written in terms of the error function as
bxðy; tÞ ¼ 2� 2ffiffiffiffi
p
p

Z y
2
ffiffiffiffiffiffiffi
t=Rer
p

�1
e�n2

dn:
Fig. 3. Time evolution of the pressure field: (a) t ¼ 0, (b) t ¼ 0:18, (c) t ¼ 0:36.
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The Reynolds number is set to Re ¼ 1, the grid point number to Ny ¼ 100 in the space range �5 < y < þ5, the time step is
fixed to Dt ¼ 10�3 to obtain time-step-independent results. The computed solution is plotted in Fig. 4 at several time instants
for Rer ¼ 1. The temporal evolution of the magnetic field is due to magnetic field diffusion into the conducting fluid. Fig. 4
shows that the results of the MHD calculations are indistinguishable from the theoretical solution.

8. Conclusions

A high order pseudo-wave numerical method has been developed to solve the governing equations of non-ideal MHD. The
new formulation of the MHD equations exhibits the contribution of each different wave-type to the overall dynamics. A
high-order DRP scheme is used for the spatial discretization and third order TVD Runge kutta for temporal advance. This
method maintains a good stability and allows a boundary treatment consistent with the interior scheme. The present meth-
od can easily be extended to the three-dimensional case and/or multiblock simulations and so easily adapted to parallel
intensive computational framework.

In the future, this code will be used to investigate the feasibility of electromagnetic laminar and turbulent flow control for
which the physics of the boundary layer has to be very well captured. Moreover, this code could be very useful to better under-
stand the magneto-aeroacoustic mechanisms in the MHD paradigm. Indeed, the good capacity of the method to treat the acous-
tic propagations and the corresponding boundary conditions, makes it a powerful tool to explore the different types of
magnetoaeroacoustic sinks and sources as well as the related wave interaction mechanisms in a compressible conducting fluid.

Appendix A

The terms appearing in Eqs. (44)–(51) are given by the relations:
Yp ¼ �qa2½ay
f ðF

þ
y þ F�y Þ þ ay

sðS
þ
y þ S�y Þ�;

Yu ¼ ay
f cy

f ðF
þ
y � F�y Þ � ay

s cy
sðS
þ
y � S�y Þ;

Yv ¼ þ by
xffiffiffi
2
p ðAþy þ A�y Þ � by

z signbz½ay
s cy

sðF
þ
y � F�y Þ � ay

f cy
f ðS
þ
y � S�y Þ�;

Yw ¼ � by
zffiffiffi
2
p ðAþy þ A�y Þ � by

x signby½ay
s cy

sðF
þ
x � F�x Þ � ay

f cy
f ðS
þ
x � S�x Þ�;

Ybx ¼ �My=R1=2
b ;

Yby ¼ 1

R1=2
b

�by
x

ffiffiffiffi
q
2

r
Aþx � A�x
	 


� by
z a

ffiffiffiffi
q
p

ay
s Fþy þ F�y
� �

� ay
f Sþy þ S�y
� �h i� �

;

Ybz ¼ 1

R1=2
b

þby
z

ffiffiffiffi
q
2

r
ðAþy � A�y Þ � by

xa
ffiffiffiffi
q
p ½ay

sðF
þ
y þ F�y Þ � ay

f ðS
þ
y þ S�y Þ�

� �
;

Ys ¼ �Ey;
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where
ay
s ¼

cy
f

2 � a2

cy
f

2 � cy
s

2 ; ay
f ¼

a2 � cy
s

2

cy
f

2 � cy
s

2 ;

by
x ¼

bxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

x þ b2
z

q ; by
z ¼

bzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

x þ b2
z

q :
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